On Bounds for the Norm of Certain Symmetric Projections with a Finite Carrier

E. Neuman
Institute of Informaics, Unitersity of Wrochaw, 50-384 Wrockaw, Poland

Communicated by $E . W$. Cheney
Received November 5, 1975

1. Introduction

Let $C[-1,1]$ denote the space of real valued and continuous functions in the interval $[-1,1]$ (endowed with the sup-norm) and let Π_{n} be the subspace of algebraic polynomials of degree at most $n(n \geqslant 0)$. By P we denote a bounded linear map; $P: C[-1,1] \rightarrow \Pi_{n}$. Additionally we assume that P is idempotent (i.e., $P^{2}=P$). Such an operator P will be called a projection. The general form of a projection is known (see, e.g., [6]). An important class of projections are the so-called projections with finite carrier [3] given by the formula

$$
\begin{equation*}
P_{f}=\sum_{i=0}^{m} f\left(t_{i}\right) y_{i} \tag{1.1}
\end{equation*}
$$

where $f \in C[-1,1], \quad-1 \leqslant t_{0}<t_{1}<\cdots<t_{m} \leqslant 1$, and $y_{i} \in \Pi_{n}(i=0$, $1, \ldots, m ; m \geqslant n$). We say that the projection (1.1) is carried by the nodal set $\left\{t_{i}\right\}(i=0,1, \ldots, m)$. The condition $P^{2} \cdots P$ forces the following equalities for the polynomials y_{i} (see, e.g., [6])

$$
\begin{equation*}
\sum_{i=1}^{i m} t_{i}^{k} y_{i}(t)==t^{k} \quad(k=0,1, \ldots, n) \tag{1.2}
\end{equation*}
$$

The so called Lebergue function

$$
A_{p}(t)==\sum_{i=0}^{m} y_{i}(t)
$$

is connected with the above projection P. It is known that $P=A_{P} \|_{\alpha}$.
Let $R: C[-1,1] \rightarrow \Pi_{n}$ be an arbitrary projection (in particular may be $R=P$). The elementary but important inequality

$$
f-R f^{\prime} x_{x} \leqslant(1 \therefore R!) \operatorname{dist}\left(f, I I_{n}\right)
$$

holds. From this it is obvious that the accuracy of approximation of f by $R f$ depends on the norm of the projection R. The quantity bounding from above the error ${ }^{i} f-R f_{x}$ is small if; R^{\prime} is small. Hence we see that the information on the norm of the projection is very important. It also known [7] that for the above projection R is $R:\left(2 / \pi^{2}\right) \log n \cdots \quad O(1)$.

Let Σ denote the class of all projections from $C[1,1]$ onto $1 I_{n}$. The projection $\bar{R} \in \Sigma$ is called a minimal projection if the inequality: $\bar{R}: R$ holds for all $R \in \Sigma$ '.

Let σ be a subclass of Σ containing the projections of the form (1.1) for which the symmetry conditions

$$
\begin{equation*}
\operatorname{Pf}(x)(t) \quad \operatorname{Pf}(-x)(-t) \quad(x, t \in[-1,1]) \tag{1.3}
\end{equation*}
$$

hold. Every such projection will be called a spmmetric projection with finite carrier (SPFC).

Now we assume that $m=n: 1$.
In this note some bounds for the norm of the minimal SPFC \bar{P} with nodal set the extrema of the Chebyshev polynomial of the first kind are given.

For simplicity set

$$
\begin{align*}
& \lambda_{n}=\frac{1}{n \because 1} \sum_{i=1}^{n} \tan \frac{(2 i-1) \pi}{4(n-1)} \tag{1.4}\\
& \left.t_{i}=-\cos \frac{\pi i}{n} \quad \text { (i } 0,1, \ldots n \quad 1\right) \tag{1.5}
\end{align*}
$$

It is known [1] that

$$
\begin{equation*}
\lambda_{n}=(2 / \pi) \log n \cdots O(1) \tag{1.6}
\end{equation*}
$$

The proof of the following theorem is postponed to Section 4.
Theorem 1.1. Let n be an even number $(n \geqslant 0)$. Then for the norm of the minimal SPFC \bar{P} with nodes (1.5) the following inequalities hold

$$
\begin{equation*}
\lambda_{n}<\tilde{P}=\lambda_{n}: 1 \tag{1.7}
\end{equation*}
$$

where λ_{n} is given by (1.4). Hence, by cirtue of (1.6), $\bar{P} \mid \sim(2 / \pi) \log n$.
In the proof of this theorem an important role is played by the so-called operator of de la Vallée Poussin [4] described in Section 2.
2. The Operator of de la Vallée Polssin

For the function $f \in C[-1,1]$ and $n \quad 2$ distinct points $\left\{t_{i}\right\}(1) i_{n}$ $\left.t_{1}<\cdots<t_{n, 1} 1\right)$ we denote by A the operator the value of which is the
nth optimal (in sup-norm) polynomial for the function f on the above set $\left\{t_{i}\right\}$. It is known that A is a projection with value given by the formula

$$
\begin{equation*}
A f=\sum_{i=0}^{n+1} f\left(t_{i}\right) q_{i} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
q_{i} & =z_{i}-\theta_{i} r, \\
z_{i}(t) & =x_{i} \prod_{\substack{j=0 \\
i \neq i}}^{n+1}\left(t-t_{j}\right), \\
x_{i} & =\prod_{\substack{j=0 \\
j \neq i}}^{n+1}\left(t_{i}-t_{i}\right)^{-1}, \tag{2.2}\\
\theta_{i} & =(--1)^{n-1} x_{i} / \sum_{j=0}^{n+1}\left|x_{i}\right|, \\
r & =\sum_{i=10}^{n+1}(\cdots 1)^{i} z_{i} \quad(i=0.1, \ldots, n+1)
\end{align*}
$$

(see, e.g., [5]).
For the nodes (1.5) the projection A may be written in the following form ([7])

$$
\begin{equation*}
A f(t)=\frac{1}{n-1} \sum_{i=1}^{n+1} f\left(t_{i}\right)(-1)^{i}\left[\frac{t^{2}-1}{t-t_{i}} U_{n}(t)-T_{n+1}(t)\right] \tag{2.3}
\end{equation*}
$$

(where T_{l} and U_{l} denote the Chebyshev polynomials of the first and second kinds, respectively).

3. The Connection between the Projections A and P

Recently [5] for the projections A and P the following result was obtained

$$
\begin{equation*}
A f(t)=P f(t)-\sum_{i=0}^{n+1} \theta_{i} f\left(t_{i}\right) \sum_{j=0}^{n+1} \operatorname{sgn} \theta_{i} y_{j}(t) \tag{3.1}
\end{equation*}
$$

where the numbers θ_{i} are given by (2.2).
Let the polynomials $y_{;}$be written in the following way

$$
y_{j}(t)=\sum_{i=1}^{n} s_{i ;} t^{i} \quad(j=0,1, \ldots, n+1)
$$

Further let $\tau_{j} \ldots s_{0 j}=y_{j}(0)$. With the above notations we see that projection (1.1) is symmetric if

$$
\begin{equation*}
-t_{i}=t_{n+1 \ldots i} \quad(i \quad 0,1, \ldots, n: 1) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{array}{ll}
s_{i} \quad s_{i \cdot n+1 \cdots j} \quad \text { for } i \text { even, } \tag{3.3}\\
& (i=0,1, \ldots, n ; j-0,1, \ldots, n=1) .
\end{array}
$$

In virtue of (3.3) and the above notations we have

$$
\begin{equation*}
\tau_{j}=\tau_{n=1-j} \quad(j=0, f, \ldots, n \cdots 1) . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. If n is even $(n=0)$ and if the projection P is such that for it (3.4) holds, then $\Lambda_{, 1}(0)=A_{P}(0)$ where A is given by (2.1), P is giren by (1.1) (for $m=n \therefore 1$).

Proof. From (3.1) and (1.1) it follows that

$$
A_{A}(0)=\sum_{i=0}^{n_{1} 1}\left|y_{i}(0)-\theta_{i} \sum_{j=0}^{n-1} \operatorname{sgn} \theta_{j} y_{j}(0)\right|-\sum_{i=0}^{n+1}\left|\tau_{i}-\theta_{i} \sum_{i=0}^{n \cdot 1} \operatorname{sgn} \theta_{j} \tau_{j}\right| .
$$

From (2.2) we obtain $\operatorname{sgn} x_{j}=(-\cdots)^{i=1}$. For n even it follows from (2.2) that $\operatorname{sgn} \theta_{j}-(-1)^{j}(j \cdots 0,1, \ldots, n \div 1)$. Hence and from (3.4) is

$$
\sum_{i=0}^{n-1} \operatorname{sgn} \theta_{j} \tau_{j}=0 \quad \text { and now } \quad A_{A}(0)=\sum_{i=0}^{\mu: 1} \tau_{i}=A_{P}(0) .
$$

The above lemma will be used in Section 4.

4. Proof of Theorem 1.1

We prove first the left inequality of (1.7). For 11 even $T_{n \ldots, 10)}=0$ and $U_{n}(0) \quad 1$. Hence in virtue of Lemma 3.1 and (2.3) we have

$$
\Lambda_{p}(0)=\Lambda_{A}(0)=(1 /(n \div 1)) \sum_{i=0}^{n \prime 1} 1 / \boldsymbol{t}_{i} \mid=\lambda_{n}
$$

It is obvious that the inequality $\lambda_{n} \ldots: P$ holds for every projection satisfying the assumptions of the our theorem. In particular we have $\lambda_{,}, \bar{P}$

Now we prove the second inequality of (1.7). From (2.3) we see that projection A is a symmetric projection $(A \in \sigma)$. From the definition of a minimal projection we have $\|\bar{P}\| \leqslant\| \|$. In the recent paper [2] the authors proved that $A \leqslant \lambda_{n}: 1$. Hence the result.

References

1. S. N. Bernstein, Sur la limitation de valeurs d`un polynome $P_{u f}(x)$ de degré asur tout un segment par ses valeurs en $n \therefore$ i points du segment, Bull. Acad. Sci. USSR, (1931), 1025-1050.
2. E. W. Cheney and T. J. Rivein, Some polynomial approximation operators, Math. Z. 145 (1975), 33-42.
3. E.W. Cheney, Projections with finite carriers, in"ISNM 16, Proceedings of a Confercnce at Oberwolfach, Junc 1971," pp. 19-32, Birkhäuser. Basel, 1972.
4. C. de la Vallée Poussin, Sur les polynômes dapproximation et la représentation approchée d'un angle, Acad. Roy. Belg. Bull. Cl. Sci. 12 (1910), 808-844.
5. P. D. Morris, K. H. Price, and E. W. Cheney, On an approximation operator of de la Vallée Poussin. J. Approximation Theory 13 (1975), 375-391.
6. E. Neuman, Projections in uniform polynomial approximations, Zastosors. Mat. 14 (1974), 99-125.
7. S. Paszkowski, "Zastosowania numeryczne wielomianów i szercgów Czebyszewa," PWN, Warszawa, 1975.
